

Hopper Kid ccTalk
Standard / Reverse

Manuale d’uso

 Hopper Kid ccTalk

 Manuale d’uso

 Rev. 1.01

Congratulazioni per l’acquisto dell’erogatore di monete Alberici Hopper Kid!

Questo erogatore, progettato e realizzato nei laboratori di ricerca Alberici

ricorrendo alle più moderne tecnologie di sviluppo sia nel settore dell’elettronica

che della meccanica, nasce per coprire le esigenze di coloro che lavorano nel

mercato dei pagamenti automatici.

L’apparecchio funziona con tensione di alimentazione + 24V.

I sensori di livello massimo (pieno) e minimo (riserva) possono essere ad elettrodo

(Modello PLATE a lamelle), oppure a tecnologia ottica (Modello OPTO); in questo

secondo caso si elimina ogni possibilità di malfunzionamenti dovuti a scariche

elettrostatiche accumulate dalle monete.

In presenza di sensori a tecnologia ottica, è comunque raccomandato di collegare le

lamelle alla terra della macchina.

1. Descrizione generale

1.1 Sfera di utilizzo

La tecnologia implementata permette all’Hopper Kid di contare autonomamente le monete da

erogare, e di fermarsi nel caso sia vuoto.

Tutto questo avviene sfruttando una notevole quantità di routines di controllo per la gestione degli

eventi interni ed esterni.

Si integra quindi con facilità sia in giochi con vincita che in impianti di cambio moneta.

Queste caratteristiche lo rendono facilmente compatibile con tutte le schede normalmente disponibili sul

mercato.

1.2 Sicurezza

L’Hopper dovrà essere installato all’interno di sistemi o di apparecchiature che siano dotati di dispositivi

di disconnessione dell’alimentazione di rete.

Il montaggio e lo smontaggio dell’hopper dalla sua base a slitta deve avvenire ad alimentazione spenta.

Non introdurre le dita o le mani all’interno dell’hopper (parti meccaniche in movimento).

L’installazione deve essere eseguita come da specifiche al paragrafo 2.3 .

2. Caratteristiche meccaniche

L’Hopper Kid ccTalk è disponibile in 2 distinte versioni, che si differenziano a seconda delle posizioni

rispettive fra il connettore Cinch e l’uscita monete. Quando sono situate sui lati opposti, la versione è detta

“STANDARD”; quando si trovano sullo stesso lato, la versione è detta “REVERSE”.

Può gestire qualsiasi moneta il cui diametro sia compreso tra 16mm e 32mm (a scelta 2 catene: una da 16-

24mm, e una da 22-32mm), e il cui spessore sia fra 2,0 mm e 3,4 mm.

ATTENZIONE

PERICOLO !

ORGANI MECCANICI IN MOVIMENTO

2.1 Ingombri (inclusa base a slitta)

2.1 Posizione dei Connettori

Versione Reverse

(connettore sul lato di uscita delle monete)

Versione Standard

(connettore sul lato opposto a quello di uscita

delle monete)

2.3 Installazione

Per montare l’apparecchio:

 . fissare sul mobile la piastra di base: su questa andrà agganciato l’hopper

. inserire l’hopper, facendolo slittare sulla piastra di base fino a completa battuta

. effettuare i collegamenti elettrici (vedi capitolo 3)

66m

m

68.0mm 118mm

92mm

214mm

ø 5.5 mm

Utilizzare viti a testa conica

Direzione di

inserimento

Superficie di fissaggio del mobile

COLLEGARE SEMPRE QUESTO

CONTATTO AL TERMINALE DI

TERRA DELLA MACCHINA

Slitta di fissaggio dell’Hopper

3. Caratteristiche elettriche

Tutti i segnali gestiti dall’hopper sono in logica negativa: il segnale è considerato attivo quando si trova a

livello BASSO (GND).

3.1 Pinout connettore Cinch e connettore schedino 10poli

3.2 Alimentazione

L’Hopper Kid deve essere alimentato con +24V in tensione continua sul pin 9 (pin 1 = GND), se si usa

il connettore CINCH. Sul connettore 10p, i +24V vanno forniti sul pin 7; collegare la terra al pin 8.

La velocità di erogazione delle monete è proporzionale alla tensione di alimentazione del motore. Si

raccomanda di non scendere mai al disotto di 18Vdc e di non superare i 27Vdc.

Con una tensione di 24 Vdc la quantità massima di gettoni erogabili è di 240 al minuto; aumentare la

tensione di alimentazione non fa aumentare la velocità di erogazione.

In presenza di sensori di livello a tecnologia ottica, si raccomanda di collegare le lamelle comunque presenti

sull’hopper alla terra della macchina.

Consumi:

 A riposo A vuoto Sotto carico In blocco (*)
Scheda

(+24Vdc) 20mA/0,24W 20mA/0,24W 40mA/0,48W 40mA/0,48W
Motore

(+24Vdc) 0mA/0m W 70mA/1,4W 1,2 A/28.8W 1,5mA*/30W
Totale 20mA/0,24 W 90mA/1,64W 1,24A/29,28W 1,54 /30,48W

* Il consumo del motore in blocco è limitato elettronicamente, e l’assorbimento qui indicato sarà reale solo

per pochi secondi.

COLLEGARE SEMPRE IL TERMINALE DELL’HOPPER QUI INDICATO

AL TERMINALE DI TERRA DELLA MACCHINA, PER PREVENIRE

EVENTUALI DANNEGGIAMENTI DOVUTI ALLE CARICHE

ELETTROSTATICHE INTRODOTTE CON LE MONETE.

Communication ccTalk protocol

cctalk® communication protocol is the Money Controls
1

serial communiction protocol for low

speed control networks. It was designed to allow the interconnection of various cash handling
devices (Hopper, Card reader, Bill validators, Coin selectors etc.), mostly in AWP and gaming
Industry, but allso in other devices that use those components. cctalk® is an open standard.

All documentation is available at web site: www.cctalk.org.
The communication protocol of the Alberici ccTalk HopperCD is implemented according to

generic specification 4.2
Serial communication was derivated from RS232 standard. Low data rate NRZ (Non Return to
Zero) asyncronous communication: Baud rate 9600, 1 start bit, 8 data bits, no parity, 1 stop bit.
RS232 handshaking signals (RTS, CTS, DTR, DCD, DSR) are not suported. Message integrity

is controlled by means of checksum calculation.

1.1 Baud rate

The baud rate of 9600 was chosen as compromise betwen cost and speed. Timing
tolerances is same as in RS232 protocol and it should be less than 4%.

1 Communication specifications

Data I/O line is “open collector” type, so it is possible to use device in systems with
different voltage.

Mark state (idle) +5V nominal from 3.5V to 5V Space state (active) 0V

nominal from 0.0V to 1.0V

1.3 Connection

To reduce the costs of connections the “Level shifted “ version of RS232 is used. The idle
state on serial connector is 5V, and active state is 0V.

The connection of HopperCD at network is achieved by means of its 10-pin connector .
Connector is used for power supply and for communication as well. For schematics and
and connector appearance see picture at page 4.

1.2 Voltage level

1

Formally Coin Controls

1

2

3

4

5

6

7

8

9

1

11

1

1.4 Message structure

Each communication sequence consists of two message packets.
Message packets for simple checksum case is structured as folows:

[Destination address]
[Nr. of data bytes] [
Source address] [
Header] [Data 1] ... [
Data n] [Checksum]

There is an exception of message structure when device answer to instruction Address poll

and Address clash
2

. The answer consists of only one byte representing address delayed for
time proportional to address value. For CRC checksum case format is:

[Destination address]
[Nr. of data bytes] [
CRC 16 LSB] [Header
] [Data 1] ... [Data n] [
CRC 16 MSB]

1.4.1 Address

Address range is from address 0 to address 255. Address 0 is special case or so caled
“brodcast” address and address 1 is default host address. The recomandations for
address value of different devices are presented in table 1.

Table 1 Standard address for different types of devices

Address for Alberici HopperCDc is factory set at value 3, but the user can change the default
address using MDCES instructions Address change or Address random or setting Hopper
external switch.

2

For details see cctalk42-2.pdf, Address poll

Device category Address Additional addr. Note

Coin Acceptor 2 11 -17 Coin validator, selector, mech...

Payout 3 4 -10 Hopper

Bill validator 40 41 -47 Banknote reader

Card Reader 50 -

Display 60 Alphanumeric LC display

Keypad 70 -

Dongle 80 85 Safety equipment

Meter 90 Replacement for el.mec. counters

Power 100 Power supply

 1.4.2 Number of data byte

Number of data byte in each transfer could be from 0 to 252. Value 0 means that there are
no data bytes in the message, and total lenght of message packet will be 5 bytes. Although
theoretically it will be possible to send 255 bytes of data because of some limitations in

small micro controllers the number is limited to 252
3

.

1.4.3 Command headers (Instructions)

Total amount of possible cctalk command header is 255 with possibility to add sub-heaers
using headers 100, 101, 102 and 103. Header 0 stands for ACK (acknowledge) replay of
device to host. Header 5 stands for NAK (No acknowledge) replay of device to host. Header
6 is BUSY replay of device to host. In all three cases no data bytes are transferred. Use of

ACK and NAK headers are explained later on, for each specific message transfer.
Commands are devided in to several groups according to application specifics:

3

252 bytes of data, source address, header and checksum (total of 255 bytes)
4

First level of implementation
5

See Error handling

Alberici HopperCD use 24
4

instructions-headers.

Details of all instruction use are explained in chapter 2.

1.4.4 Data

There is no restrictions data formats use. Data could be BCD (Binary Coded
Decimal)numbers, Hex numbers or ASCII strings. Intrepretation as well as format is

specific to each header use, and will be explained in separate chapter.

1.4.5 Checksum

Message integrity during transfer is checked by use of simple zero checksum calculation.
Simple checksum is made by 8 bit addition (modulus 256) of all the bytes in the message. If

message is recieved and the addition of all bytes are non-zero then an error has occurred
5

.
For noisy enviroment or higher security application it is possible to use more complex, 16 bit

CRC CCITT checksum based on a polynomial of: x
16

+ x
12

+ x
5

+ 1 and initial value of CRC

register 0x0000.

Hopper are using simple checksum, but they could be set to operate with CRC-16

checksum on customer demand.

Device category Address Additional addr. Note

Coin Acceptor 2 11 -17 Coin validator, selector, mech...

Payout 3 4 -10 Hopper

Bill validator 40 41 -47 Banknote reader

Card Reader 50 -

Display 60 Alphanumeric LC display

Keypad 70 -

1.5 Timing specification

The timing requierments of cctalk are not very critical but there are some recomandations.

1.5.1 Time beetwen two bytes

When reciving bytes within a message packet, the comunication software must wait up to 50
ms for next byte if it is expected. If time out occurs, the software should reset all

communication variables and get ready to recieve next message. The interbyte delay during
transmition should be ideally less than 2 ms and not greater than 10 ms.

1.5.2 Time beetwen comand and replay

The time beetwen comand and reply is dependent on application specific for each comand.
Some comands return data imediatly, and maximum time delay should be within 10
ms.Others comands that must activate some actions in device may return reply after the

action is finished

After the power-up sequence HopperCD should be ready to accept and answer to a cctalk
message within time period of less than 250 ms. During that period all internal check-up and
system settings must be done, and HopperCD should be able works fine.

1.6 Error handling

If slave device receive the message with bad checksum or missing data no further action is
taken and receive buffer will be cleared. Host software should decide to re-transmit message
immediately or after a fixed amount of time. In case when host receive message with error it
has same options.

1.5.3 Start-up time

 2. HopperCD Command header set

The fastest way for host to detect all attached devices in cctalk network. Addressed
device -Hopper answer with ACK (Acknowledge). If within predicted amount of time

Hopper does not answer, probably is not connected, powered or simple not working
properly. Message format is:

2.1.1 Command header 254 [hexFE], Simple poll

Common commands are used in all type of devices to detect there presence on cctalk
network or to describe them. Information like: manufacturer or product type id, serial
number, different settings etc. are transmitted to host.

2.1 Common command headers

-Common command headers -
Hopper command headers -
MDCES command headers

Command headers are divided in to 3 different groups:

Table 2 shows the Command header set that host can use in communication with Hopper.

Table 2 List of Hopper cctalk command header

Code Command header Note

254 FE Simple poll Return ACK

253 FD Address poll MDCES support

252 FC Address clash MDCES support

251 FB Address change MDCES support, non volatile

250 FA Address random MDCES support, non volatile

246 F6 Request manufacturer id ’Alberici group’

245 F5 Request equipment category id ‘Payout’

244 F4 Request product code ‘HopperTwo ccTalk’

242 F2 Request serial number From 0 to 16.777.215

241 F1 Request software revision ‘X.xx’

219 DB Enter new PIN number Supported, non volatile

218 DA Enter PIN number ACK return if PIN is correct

217 D9 Request payout high/low stat. Return empty/full status

216 D8 Request data storage availability [00][00][00][00][00] ,not available

192 C0 Request build code ‘ALH02v00’

172 AC Emergency stop Return ACK

169 A9 Request address mode
[B7] add.changed with serial
command(nv)

168 A8 Request hopp.dispense count From 0 to 16.777.215

167 A7 Dispense hopper coins Data = Serial number + N°of coin to disp.

166 A6 Request hopper status Return dispensed coin counters

164 A4 Enable hopper Data must be A7

163 A3 Test hopper Return hardware status

4 4 Request comms revision [02][04][02] ,level2, isue4.2

1 1 Reset device Software reset

 [Dir] [04] [01] [DB] [PIN1-LSB][PIN2][PIN3][PIN4-MSB] [Chk]

Host sends: [Dir] [00] [01] [FE] [Chk] Hopper answer: [01] [00] [Dir] [00] [Chk] Hopper default

address is 3, example of message packet is:

Host sends: [03] [00] [01] [FE] [FE] Hopper answer: [01] [00] [03] [00] [FC] ACK message

2.1.2 Command header 246 [hexF6], Request manufacturer ID

Hopper answer with ASCII string representing manufacturer name.
Message format is:

Host sends: [Dir] [00] [01] [F6] [Chk] Hopper answer: [01] [Nr.b] [Dir] [00] [a1] [a2] [an] [Chk]

Nr.b is number of data bytes-characters sent by Hopper, and a1 to an are ASCII characters.

For Alberici group Hopper, example of message packet is:

Host sends: [03] [00] [01] [F6] [06] Hopper answer [01] [0E] [03] [00] [41] [6C] [62] [65] [72] [69] [63]

[69] [20] [67] [72] [6F] [75] [70] [86]

2.1.3 Command header 245 [hexF5], Request equipment category ID

Answer to command header is standardized name for Hopper. It answer with ASCII string of
characters representing standardized name for that type of device Payout. Message format is:

Host sends: [Dir] [00] [01] [F5] [Chk] Hopper answer: [01] [06] [Dir] [00] [50][61][79][6F][75][74][Chk]

Number of data byte is always 6, hex [06]. Example of message packets for coin selector

(address 3) is:

Host sends: [03] [00] [01] [F5] [07] Hopper answer: [01] [06] [03]

[00]] [50][61][79][6F][75][74] [74]

2.1.4 Command header 244 [hexF4], Request product code

Hopper answer with ASCII string of character, representing its factory type. For Alberici
Hopper it’s HopperTwo ccTalk. Message format is:

Host sends: [Dir] [00] [01] [F4] [Chk] Hopper answer: [01] [10]

[Dir] [00] [a1][a2] . . . [an] [Chk] Number of data bytes sent by

Hopper is 16, hex [10]. Example of message packets for

Hopper (address 3) is :

Host sends: [03] [00] [01] [F4] [08]

Hopper answer: [01][10][03][00][48][6F][70][65][72][54][77][6F][20][63][63][54][61][6C] [6B][D2]

2.1.5 Command header 242 [hexF2], Request serial number

Hopper answer with three byte serial number.
Message format is:

Host sends: [Dir] [00] [01] [F2] [Chk] Hopper answer: [01] [03] [Dir] [00] [Serial 1 -LSB] [Serial 2]

[Serial 3 -MSB] [Chk] Serial 1 – first data byte sent is LSB of serial number. Example of

message packets for Hopper (address 3) and serial number 1-2-34567, hex [BC][61][4E] is:

Host sends: [02] [00] [01] [F2] [0A] Hopper answer: [01]

[03] [03] [00] [4E][61][BC] [8E]

2.1.6 Command header 241 [hexF1], Request software revision

Hopper return ASCII string of character representing software version and revision.
Message format is:

Host sends: [Dir] [00] [01] [F1] [Chk] Hopper answer: [01] [Nr.b] [Dir] [00] [a1] [a2].... [an] [Chk]

Number of data bytes in ASCII string is not limited and each producer has it’s own system of

labelling. Example of message packets for Hopper (address 3) is:

Host sends: [03] [00] [01] [F1] [0B] Hopper answer: [01] [04]

[03] [00] [31] [2E] [32] [31] [36] Hopper answer is ‘1.21’.

2.1.7 Command header 192 [hexC0], Request build code

Hopper answer with ASCII string of character representing it’s hardware version and

revision
6

. Last revision of printed circuit board for Hopper is ALH02v00. Message format is:

Host sends: [Dir] [00] [01] [C0] [Chk] Hopper answer: [01] [Nr.b]

[Dir] [00] [a1] [a2].... [an] [Chk]

Example of message packets for Hopper (address 3) is:

Host sends: [03] [00] [01] [C0] [3C] Hopper answer: [01] [08] [03] [00 [41] [4C] [48] [30] [32] [76] [30] [30] [E7]

6

Usually label printed on electronic circuit board

2.1.8 Command header 169 [hexA9], Request address mode

Hopper answer with one data byte
7

information about address mode and options. Address
could be stored in different type of memory (RAM. ROM or EEPROM). Some devices support

address change wit MDCES command headers
8

. Message format is:

Host sends: [Dir] [00] [01] [A9] [Chk] Hopper answer: [01] [01] [Dir] [00] [Address mode] [Chk]

Example of message packets for Hopper (address 3) is:

Host sends: [03] [00] [01] [A9] [53] Hopper answer: [01] [01] [03] [00] [B7] [44] Hopper answer

with data [B7]. It means that address may be changed with serial command (non

volatile).If answer is [B3], mean that address is selected via interface connector.

.

2.1.9 Command header 4 [hex04], Request comms revision

Hopper answer with three byte data information about level of cctalk protocol
implementation, major and minor revision. Message format is:

Host sends: [Dir] [00] [01] [04] [Chk] Hopper answer: [01] [03] [Dir] [00] [Level] [Mag.rev.] [min. rev.] [Chk]

Example of message packets for Hopper (address 3), cctalk protocol issue 4.2, is:

Host sends: [03] [00] [01] [04] [F8] Hopper answer: [01] [03] [03] [00] [01][04][02] [F2]

2.1.10 Command header 1 [hex01], Reset device

After acceptance of command Reset coin selector execute software reset and clear all
variables in RAM or set them at the default value, including different counters, and any
buffers. After reset coin selector replay with ACK message.. Host software must re enable
hopper to perform a new payout:

Message format is:

Host sends: [Dir] [00] [01] [01] [Chk] Hopper answer: [01] [00] [Dir] [00] [Chk] ACK message

Example of message packets for hopper (address 3) AL06V-c is:

Host sends: [03] [00] [01] [01] [FB] Hopper answer: [01] [00] [03] [00] [FC] ACK message

7

Details of description see in public document cctalk42-2.pdf
8

Address change, Address random

 2.2 Hopper command headers

Hopper use some specific commands, for paying or read itself status. Some of commands
are shared with other device like banknote reader or coin selector devices.

2.2.0 Command header 219 [hexDB], Enter new PIN number

Host send four byte data of new PIN number. If correct PIN was previously received
9

Hopper

will accept the new PIN and answer with ACK message . Hopper has PIN number stored in
EEPROM. Message format is:

BIT0 -Low level sensor status. 0 – Higher
than or equal to low level trigger 1 – Lower
than low level trigger BIT1 – High level
sensor status 0 -Lower than high level trigger
1 -Higher than or equal to high level trigger

This command allow the reading of High/low level sensor in payout systems.
Hopper answer with one byte that describe the sensors status. The meaning of
bits in that byte is the following:

2.2.2 Command header 217 [hexD9],Request Payout Hi-Lo status

Hopper answer: [01] [00] [03] [05] [F7] dly 100 ms ->NAK if PIN is incorrect

Host sends: [03] [04] [01] [DA] [01][00][00][00] [1E]

Example of message packets for Hopper (address 3), with default PIN,
hex[00][00][00][00] and wrong pin is:

Hopper answer: [01] [00] [Dir] [05] [Chk] dly 100 ms ->NAK if PIN is incorrect

Hopper answer: [01] [00] [Dir] [00] [Chk] ACK if PIN is correct

Host sends: [Dir] [04] [01] [DA] [PIN1-LSB][PIN2][PIN3][PIN4-MSB] [Chk]

Host send four byte data of PIN number. If PIN is correct, Hopper will answer immediately with
ACK message. If PIN is incorrect the NAK message will be sent with time delay of 100 ms.
Hopper has PIN number stored in EEPROM. Message format is:

2.2.1 Command header 218 [hexDA], Enter PIN number

Example of message packets for Hopper (address 3), with default PIN,
hex[00][00][00][00] previously received and NEW pin hex[01][02][03][04] is:

Host sends: [03] [04] [01] [DB] [01][02][03][04] [13]

Hopper answer: [01] [00] [03] [00] [FC] ACK message

9

See next chapter

Code Command header Note

254 FE Simple poll Return ACK

253 FD Address poll MDCES support

252 FC Address clash MDCES support

BIT4 -Low level sensor support 0 –
Features not supported or fitted 1 -
Features supported and fitted

BIT 5 -High level sensor support 0 -
Features not supported or fitted 1 -
Features supported and fitted

BIT2,3,6,7 are reserved bits Trigger level is set by fixed
sensor into hopper mechanism.

Message format is:

Host sends: [Dir] [00] [01] [D9] [Chk]

Hopper answer: [01] [01] [Dir] [00] [d1] [Chk]

Example of message packets for Hopper (address 3) is

Host sends: [03] [00] [01] [D9] [23]

Hopper answer: [01] [01] [03] [00] [31] [CA]

Data byte Hex[31] mean that Hopper high and low sensor are supported, and hopper is
empty.

2.2.3 Command header 216 [hexD8], Request data storage availability

Hopper answer with five byte of data that describes type of memory and availability for
host to read and to write. Message format is:

Host sends: [Dir] [00] [01] [D8] [Chk]

Hopper answer: [01] [05] [Dir] [00] [d1][d2][d3][d4][d5] [Chk]

Alberici Hopper, at the moment, does not support write or read to memory. Answer to
command is always as in example:

Host sends: [03] [00] [01] [D8] [24]

Hopper answer: [01] [05] [03] [00] [00][00][00][00][00] [F7]

2.2.4 Command header 172 [hexAC], Emergency stop.

This command immediately halt the payout sequence and reports back the number of coin
which failed to be paid out. After Emergency stop command hopper is disabled. To perform
new payout sequence, hopper must be re-enabled.

Message format is:

Host sends: [Dir] [00] [01] [AC] [Chk]

Hopper answer: [01] [01] [Dir] [00] [d1] [Chk]

Example of message packets for Hopper (address 3) is

Host sends: [03] [00] [01] [AC] [50]

Hopper answer: [01] [01] [03] [01] [01] [FA]

Data byte Hex[01] mean that hopper remain one coin to be paid.
2.2.5 Command header 168 [hexA8], Request hopper dispense count.

This command show the total number of coin dispensed by hopper.

Message format is:

Host sends: [Dir] [00] [01] [A8] [Chk]

Hopper answer: [01] [03] [Dir] [00] [d1] [d2] [d3] [Chk]

Example of message packets for Hopper (address 3) is

Host sends: [03] [00] [01] [A8] [54]

Hopper answer: [01] [03] [03] [03] [54] [00] [00] [A5] In this example

hopper dispensed 84 coins (deicmal of Hex 54).

Maximum value of dispensed coin stored in hopper EEPROM is 16’777’215 (3Bytes).

2.2.6 Command header 167 [hexA7], Dispense hopper coin

This command dispense coin from the hopper. Maximum number of coin hopper can
dispense with a single command is 255. After Dispense hopper coin command, hopper need
to be enabled, else dispense action is not performed.

Alberici hopper answer correctly to two format of dispense coin command.
First message format is

Host sends: [Dir] [04] [01] [A7] [sn1] [sn2] [sn3] [N°Coin][Ch k] Hopper

answer: [01] [00] [Dir] [00] [Chk] ACK or NAK

Example of first type of message packets for Hopper (address 3) is

Host sends: [03] [04] [01] [A7] [12] [34] [56] [64][Chk] Hopper

answer: [01] [00] [03] [05] [F7] NAK

Command try to pay 100 coins (64H) but serial number sent to hopper isn’t correct.
Second command format is

Host sends: [Dir][0A][01] [A7] [00] [00] [00] [00] [00] [00] [00] [00] [00] [N°Coin][Chk] Hopper

answer: [01] [00] [Dir] [00] [Chk] ACK or NAK

Example of second type of message packets for Hopper (address 3) is

2.2.7 Command header 166 [hexA6], Request hopper status

This command return four counters that explain the status of payment.

Code Command header Note

254 FE Simple poll Return ACK

253 FD Address poll MDCES support

252 FC Address clash MDCES support

251 FB Address change MDCES support, non volatile

 These four bytes are:
 1. Event Counter that show the number of good dispense events since last reset.
 2. Payout coins remaining that show how many coins are still to pay.
 3. Last Payout: coins paid, that show how many coins paid out since last dispence
command (increments with each coin dispensed)
 4. Last Payout: coins unpaid, that show how many coins was unpaid during last payout.

First two counters are saved in ram, while last two are saved in eeprom. Default value of
Event Counter and Payout coins remaining is 0, at reset and after Emergency stop
command. If a reset occurs, Event Counter and Payout coins remaining values are saved in
two Last Payout counters, in eeprom. Thus, after reset or power-off, hopper can return coin
paid and unpaid during last payout.

Command format is

Host sends: [Dir] [00] [01] [A6] [Chk]

Hopper answer: [01] [04] [Dir] [00] [d1] [d2] [d3] [d4] [Chk]

Example of message packets for Hopper (address 3) is

Host sends: [03] [00] [01] [A6] [56]

Hopper answer: [01] [04] [03] [00] [00] [00] [07] [03] [EE]

In this example hopper is not perform a payout. During last payout the hopper was power off

while paying. It had to pay 10 coin, but only 7 was really paid. Three remained.

Another example of message packets for Hopper (address 3) is

Host sends: [03] [00] [01] [A6] [56]

Hopper answer: [01] [04] [03] [00] [0B] [09] [02] [00] [E2]

In this example hopper is performing a payout. It’s the 11
th

payout before last reset. A coin is

paid (9 are remaining) and during last payout 2 coin was paid.

2.2.8 Command header 164 [hexA4], Enable Hopper

This command enable hopper before paying out coin.
Command format is

Host sends: [Dir][01][01] [A4] [d1][Chk]

Hopper answer: [01] [00] [Dir] [00] [Chk] ACK

d1 must be Hex [A5] in order to enable hopper. Example
of message packets for Hopper (address 3) is

Host sends: [03][01][01] [A4] [A5][B2]

Hopper answer: [01] [00] [03] [00] [FC] ACK

 2.2.9 Command header 163 [hexA3], Test Hopper

This command is used to test hopper hardware. It reports back a bit mask that show
various hopper error. Bit meaning is shown here :

BIT0 – Absolute maximum current exceeded BIT1 –
Payout timeout occurred BIT2 – Motor reverse during
last payout to clear a jam BIT3 – Opto fraud attempt,
path blocked during idle BIT4 – Opto fraud attempt,
short circuit during idle BIT5 – Opto blocked
permanently during payout BIT6 – Power up detected
BIT7 – Payout disabled

Command format is

Host sends: [Dir][00][01] [A3][Chk]

Hopper answer: [01] [00] [Dir] [00] [d1] [d2] [Chk]

Example of message packets for Hopper (address 3) is

Host sends: [03][00][01] [A3][59]

Hopper answer: [01] [02] [03] [00] [C0] [00] [3A]

The data byte Hex[60] means that Opto are blocked permanently during payout and Power up
was detected.

2.3 MDCES command headers

MDCES stands for Multi-Drop Command Extension Set, or so called Multi-drop buss

commands. Multi-drop buss commands gives additional functionality to systems that
require change of address for devices in cctalk network. Some of commands has
different message format than usual cctalk message. Commands are:

Because host always use address 1 and address 0 is for broadcast message all
commands that changes the address should not accept this settings.

All changes are stored in non-volatile memory, EEPROM !

Code Command header Note

254 FE Simple poll Return ACK

253 FD Address poll MDCES support

252 FC Address clash MDCES support

251 FB Address change MDCES support, non volatile

2.3.1 Command header 253 [hexFD], Address poll

This is a broadcast message used by host to determinate all address of device attached on
cctalk network. Hopper answer with only one byte (non-standard message format), after a

delay that is proportional to address value multiplied with 4 milliseconds. Message format is:

Host sends: [00] [00] [01] [FD] [Chk] Brodcast message Hopper answer: Dly ->

[Address] Example of message packets for Hopper (address 3) is:

Host sends: [00] [00] [01] [FD] [02] Hopper answer: Dly=12 ms ->

[03] Address is 3 Example of message packets for Hopper

(address 250) is:

Host sends: [00] [00] [01] [FD] [02] Hopper answer: Dly=1 s -> [FA]

Address is 250

2.3.2 Command header 252 [hexFC], Address clash

Command Address clash has same answer from Hopper, like address poll command, but
host issue this command with specific device address and not using broadcast address.
Hopper answer with only one byte (non-standard message format), after a random value of

time delay to prevent collision if two devices share same address. Message format is:

Host sends: [Dir] [00] [01] [FC] [Chk] Hopper answer: Random Dly -> [Address]

Example of message packets for Hopper (address 3) is:

Host sends: [03] [00] [01] [FC] [00] Hopper answer: Random Dly -> [03] Address is 3

2.3.3 Command header 251 [hexFB], Address change

Command Address change is issued to a specified device only. Hopper answer with ACK

message. Message format is:

Host sends: [Dir] [01] [01] [FB] [Address] [Chk] Hopper answer: [01] [00] [03] [00] [FC] ACK Example

of message packets for Hopper (address 3) and change in to address 20:

Host sends: [03] [01] [01] [FB] [14] [EC] Hopper answer: [01] [00] [03] [00] [FC] ACK Address is now 20

Hopper does not answer to attempt of change an address to 0 or 1.

Host sends: [Dir] [00] [01] [FA] [Chk]
Hopper answer: [01] [00] [03] [00] [FC] ACK

Example of message packets for Hopper (address 3) is:

Host sends: [03] [00] [01] [FA] [02]

Hopper answer: [01] [00] [03] [00] [FC] ACK

Example of broadcast message packets for Hopper is:

Address is changed

Host sends:

Hopper answer:

[00] [00] [01] [FA] [05] Brodcast message

[01] [00] [00] [00] [FD] ACK Address is changed

Hopper has internal mechanism that prevent setting of address 0 or 1.

2.3.4 Command header 250 [hexFA], Address random

Command Address random has the same answer from coin selector. New address is not sent
because each device set its own random address. Host software sometime can issue this
command as broadcast. This will cause change of all device addresses. Hopper answer with
ACK message. Message format is:

®

Progettazione e produzione di sistemi di pagamento, accessori per videogames e macchine vending

Design and manufacture of payment systems, accessories for videogames and vending machines

Via Ca’ Bianca 421

40024 Castel San Pietro

Terme (BO) – ITALY

Tel. + 39 051 944 300
Fax. + 39 051 944 594

http://www.alberici.net

info@alberici.net

